A Highly Accurate Classification of TM Data through Correction of Atmospheric Effects

نویسندگان

  • Widad Elmahboub
  • Frank Scarpace
  • Bill Smith
چکیده

Atmospheric correction impacts on the accuracy of satellite image-based land cover classification are a growing concern among scientists. In this study, the principle objective was to enhance classification accuracy by minimizing contamination effects from aerosol scattering in Landsat TM images due to the variation in solar zenith angle corresponding to cloud-free earth targets. We have derived a mathematical model for aerosols to compute and subtract the aerosol scattering noise per pixel of different vegetation classes from TM images of Nicolet in north-eastern Wisconsin. An algorithm in C++ has been developed with iterations to simulate, model, and correct for the solar zenith angle influences on scattering. Results from a supervised classification with corrected TM images showed increased class accuracy for land cover types over uncorrected images. The overall accuracy of the supervised classification was improved substantially (between 13% and 18%). The z-score shows significant difference between the corrected data and the raw data (between 4.0 and 12.0). Therefore, the atmospheric correction was essential for enhancing the image classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد داده‌های رقومی سنجنده TM در تهیه نقشه کاربری اراضی حوضه آبخیز رودخانه بازفت

Satellite data use is finding global applications because they provide repeated cover, broad information, high electromagnetic spectral resolution, and software-hardware compatibilities. This study aims to evaluate of the Landsat TM data capabilities in land-use mapping of Bazoft River basin (Chahar Mahale Bakhtiary Province). Six spectral bands of the Landsate TM were employed to produce land-...

متن کامل

کاربرد داده‌های رقومی سنجنده TM در تهیه نقشه کاربری اراضی حوضه آبخیز رودخانه بازفت

Satellite data use is finding global applications because they provide repeated cover, broad information, high electromagnetic spectral resolution, and software-hardware compatibilities. This study aims to evaluate of the Landsat TM data capabilities in land-use mapping of Bazoft River basin (Chahar Mahale Bakhtiary Province). Six spectral bands of the Landsate TM were employed to produce land-...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

NDVI and SAVI Indices Analysis in Land Use Extraction and river route

Extended abstract 1- Introduction Land use reflects the interactive characteristics of humans and the environment and describes how human exploitation works for one or more targets on the ground. Land use is usually defined based on human use of the land, with an emphasis on the functional role of land in economic activities. Land use, which is associated with human activity, is changing over...

متن کامل

Accurate Determination of GPS Receiver with Different Classification Methods

One of the instruments for determination of position used in several applications is the Global Positioning System (GPS). With a cheap GPS receiver, we can easily find the approximate position of an object. Accuracy estimation depends on some parameters such as dilution of precision, atmospheric error, receiver noise, and multipath. In this study, position accuracy with GPS receiver is classifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009